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a b s t r a c t

Accurate and timely detection of diseases and pests in rice plants can help farmers in

applying timely treatment on the plants and thereby can reduce the economic losses

substantially. Recent developments in deep learning-based convolutional neural networks

(CNN) have greatly improved image classification accuracy. Being motivated by the success

of CNNs in image classification, deep learning-based approaches have been developed in

this paper for detecting diseases and pests from rice plant images. The contribution of this

paper is two fold: (i) State-of-the-art large scale architectures such as VGG16 and Incep-

tionV3 have been adopted and fine tuned for detecting and recognising rice diseases and

pests. Experimental results show the effectiveness of these models with real datasets. (ii)

Since large scale architectures are not suitable for mobile devices, a two-stage small CNN

architecture has been proposed, and compared with the state-of-the-art memory efficient

CNN architectures such as MobileNet, NasNet Mobile and SqueezeNet. Experimental re-

sults show that the proposed architecture can achieve the desired accuracy of 93.3% with a

significantly reduced model size (e.g., 99% smaller than VGG16).

© 2020 IAgrE. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Rice occupies about 70 percent of the gross crop area and

accounts for 93 percent of total cereal production in

Bangladesh (Coelli, Rahman, & Thirtle, 2002). Rice also en-

sures food security of over half the world population (Calpe,

2002). Researchers have observed 10e15% average yield loss
l.com (C.R. Rahman).
.03.020
r Ltd. All rights reserved
because of 10 major diseases of rice in Bangladesh

(Mahmud, Hossain, & Ahmad, 2016). Timely detection of rice

plant diseases and pests is one of the major challenges in

agriculture. Hence, there is a need for automatic rice disease

detection using readily available mobile devices in rural

areas.

Deep learning techniques have shown great promise in

image classification. In recent years, these techniques have
.

mailto:rafeed.rahman015@gmail.com
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been used to analyse diseases of tea (Karmokar, Ullah, Sid-

diquee, & Alam, 2015), apple (Wang, Sun, & Wang, 2017),

tomato (Fuentes, Yoon, Kim, & Park, 2017), grapevine,

peach, and pear (Sladojevic, Arsenovic, Anderla, Culibrk, &

Ste-fanovic, 2016). Babu and Rao (2007) proposed a feed

forward back propagation neural network from scratch in

order to detect the species of plant from leaf images. Neural

network ensemble (NNE) was used by Karmokar, Ullah,

Siddiquee, and Alam (2015) to recognise five different dis-

eases of tea plant from leaves. Bhagawati, Bhagawati,

Singh, Nongthombam, Sarmah, and Bhagawati (2015)

trained a neural network with weather parameters such

as temperature, relative humidity, rainfall and wind speed

to forecast rice blast disease. Mohanty, Hughes, and Salath�e

(2016) used deep CNN to detect disease from leaves using

54,306 images of 14 crop species representing 26 diseases,

while Sladojevic, Arsenovic, Anderla, Culibrk, and

Stefanovic (2016) used CaffeNet model to recognize 13

different types of plant diseases. Wang, Sun, and Wang

(2017) worked on detecting four severity stages of apple

black rot disease using PlantVillage dataset. They used CNN

architectures with different depths and implemented two

different training methods on each of them. A real time

tomato plant disease detector was built using deep learning

by Fuentes, Yoon, Kim, and Park (2017). Brahimi, Boukhalfa,

and Moussaoui (2017) used fine-tuned AlexNet and Goo-

gleNet to detect nine diseases of tomatoes. Cruz, Luvisi, De

Bellis, and Ampatzidis (2017) injected some texture and

shape features to the fully connected layers placed after the

convolutional layers so that the model can detect Olive

Quick Decline Syndrome effectively from the limited data-

set. Instead of resizing images to a smaller size and training

a model end-to-end, DeChant, Wiesner-Hanks, Chen,

Stewart, Yosinski, and Gore (2017) used a three stage ar-

chitecture (consisting of multiple CNNs) and trained the

stage-one model on full scaled images by dividing a single

image into many smaller images. Barbedo (2018) used

transfer learning on GoogleNet to detect 56 diseases

infecting 12 plant species. Using a dataset of 87,848 images

of leaves captured both in laboratory and in the field,

Ferentinos (2018) worked with 58 classes containing 25

different plants. Liu, Zhang, He, and Li (2018) built a CNN

combining the ideas of AlexNet and GoogLeNet to detect

four diseases of apple. Images of individual lesions and

spots instead of image of whole leaf were used by Barbedo

(2019) for identifying 79 diseases of 14 plant species. Few

researches have also been conducted on rice disease clas-

sification (Atole & Park, 2018; Lu, Yi, Zeng, Liu, & Zhang,

2017). Lu et al. (2017) conducted a study on detecting 10

different rice plant diseases using a small handmade CNN

architecture, inspired by older deep learning frameworks

such as LeNet-5 and AlexNet, using 500 images. Atole and

Park (2018) used AlexNet (large architecture) to distinguish

among three classes - normal rice plant, diseased rice plant

and snail infested rice plant using 227 images.

The researchmentioned abovemainly focused on accurate

plant disease recognition and classification. For this purpose,

they implemented various types of CNN architectures such as

AlexNet, GoogLeNet, LeNet-5 and so on. In some studies,

ensemble of multiple neural network architectures have been
used. These studies played an important role for automatic

and accurate recognition and classification of plant diseases.

But their focus was not on modifying the training method for

the models that they had constructed and used. Moreover,

they did not consider the impact of the large number of pa-

rameters of these high performing CNN models in real life

mobile application deployment.

In this research, two state-of-the-art CNN architectures,

VGG16 and InceptionV3, have been tested in various set-

tings. Fine tuning, transfer learning and training from

scratch have been implemented to assess their perfor-

mance. In both the architectures, fine tuning the model

while training has shown the best performance. Though

these deep learning-based architectures perform well in

practice, a major limitation of these architectures is that

they have a large number of parameters, a problem similar

to previously conducted researches. For example, there are

about 138 million parameters in VGG16 (Simonyan &

Zisserman, 2014). In remote areas of developing countries,

farmers do not have internet connectivity or have slow

internet speed. So, a mobile application capable of running

CNN-based model offline is needed for rice disease and pest

detection. So, a memory efficient CNN model with reason-

ably good classification accuracy is required. Since the

reduction of the number of parameters in a CNN model

reduces its learning capability, one needs to make a trade-

off between memory requirement and classification accu-

racy to build such a model.

To address the above issue, in this paper, a new training

method called two stage training has been proposed. A CNN

architecture, named Simple CNN, has been proposed which

achieves high accuracy leveraging two stage training in spite

of its small number of parameters. Experimental study shows

that the proposed Simple CNN model outperforms state-of-

the-art memory efficient CNN architectures such as Mobile-

Net, NasNet Mobile and SqueezeNet in recognising rice plant

diseases and pests.

All training and validation have been conducted on a rice

dataset collected in real life scenario as part of this research. A

rice disease may show different symptoms based on various

weather and soil conditions. Similarly, pest attack can show

different symptoms at different stages of an attack. Moreover,

the diseases and pests can occur at any part of the plant which

include leaf, stem and grain. Images can also be of heteroge-

neous background. This research addresses all these issues

while collecting data. This paper focuses on recognizing eight

different rice plant diseases and pests that occur at different

times of the year at Bangladesh Rice Research Institute (BRRI).

This work also includes a ninth class for non-diseased rice

plant recognition.

In summary, this paper makes two important contribu-

tions in rice disease and pest detection. First, state-of-the-art

large scale deep learning frameworks have been tested to

investigate the effectiveness of these architectures in rice

plant disease and pest identification from images collected

from real-life environments. Second, a novel two-stage

training based light-weight CNN has been proposed that is

highly effective for mobile device based rice plant disease and

pest detection. This can be an effective tool for farmers in

remote environment.

https://doi.org/10.1016/j.biosystemseng.2020.03.020
https://doi.org/10.1016/j.biosystemseng.2020.03.020
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2. Materials and methods

2.1. Data collection

Rice diseases and pests occur in different parts of the rice

plant. Their occurrence depends on many factors such as

temperature, humidity, rainfall, variety of rice plants, season,

nutrition, etc. An extensive exercise was undertaken to collect

total 1426 images of rice diseases and pests from paddy fields

of Bangladesh Rice Research Institute (BRRI). Images have been
Table 1 e Image collection of different classes.

Class Name No. of Collected Images

False Smut 93

Brown Plant Hopper (BPH) 71

Bacterial Leaf Blight (BLB) 138

Neck Blast 286

Stemborer 201

Hispa 73

Sheath Blight and/or Sheath Rot 219

Brown Spot 111

Others 234

Fig. 1 e A sample image o
collected in real life scenario with heterogeneous backgrounds

from December, 2017 to June, 2018 for a total of seven months.

The image collection has been performed in a range ofweather

conditions - in winter, in summer and in overcast condition in

order to get as fully representative a set of images as possible.

Four different types of camera have been used in capturing the

images. These steps increase the robustness of ourmodel. This

work encompasses a total of five classes of diseases, three

classes of pests and one class of healthy plant and others - a

total of nine classes. The class names alongwith the number of

images collected for each class are shown in Table 1. Note that

Sheath Blight, Sheath Rot and their simultaneous occurrence

have been considered in the same class, because their treat-

ment method and place of occurrence are the same.

Symptoms of different diseases and pests are seen in

different parts such as leaf, stem and grain of the rice plant.

Bacterial Leaf Blight disease, Brown Spot disease, Brown Plant

Hopper pest (late stage) and Hispa pest occur on the rice leaf.

Sheath Blight disease, Sheath Rot disease and Brown Plant

Hopper pest (early stage) occur on the rice stem. Neck Blast

disease and False Smut disease occur on rice grain. Stemborer

pest occurs on both rice stem and rice grain. All these aspects

have been considered while capturing images. To prevent

classificationmodels from being confused between dead parts
f each detected class.

https://doi.org/10.1016/j.biosystemseng.2020.03.020
https://doi.org/10.1016/j.biosystemseng.2020.03.020


Table 3 e State-of-the-art CNN architectures and their
parameter no.

CNN Architecture No. of Parameters

VGG16 138 million

InceptionV3 23.8 million

MobileNetv2 2.3 million

NasNet Mobile 4.3 million

SqueezeNet 0.7 million

Simple CNN 0.8 million
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anddiseasedparts of rice plant, images of dead leaf, dead stem

and dead grain of rice plants have been incorporated into the

dataset. For example, diseases like BLB, Neck Blast and Sheath

Blight have similaritywith dead leaf, dead grain anddead stem

of rice plant respectively. Thus images of dead leaf, dead stem

and dead grain along with images of healthy rice plant have

beenconsidered in a class that has beennamedothers. Sample

images of each class have been depicted in Fig. 1.

False Smut, Stemborer, Healthy Plant class, Sheath Blight

and/or Sheath Rot class show multiple types of symptoms.

Early stage symptoms of Hispa and Brown Plant Hopper are

different from their later stage symptoms. All symptom vari-

ations of these classes found in the paddy fields of BRRI have

been covered in this work. These intra-class variations have

been described in Table 2. BLB, Brown Spot and Neck Blast

disease show no considerable intra-class variation around

BRRI area. An illustrative example for Hispa pest has been

given in Fig. 2.

2.2. Experimental setup

Keras framework with tensorflow back-end has been used to

train the models. Experiments have been conducted with two

state-of-the-art CNN architectures containing large numbers
Table 2 e Intra-class variation in some diseases and pests.

Class Name Sym

BPH Early stage of Br

Late stage of Bro

False Smut Brown symptom

Black symptom

Others Healthy green le

Healthy yellow g

Dead leaf and st

Hispa Visible black pes

No visible pest, i

Stemborer Symptom on gra

Symptom on ste

Sheath Blight and/or Sheath Rot Black Stem

White spots

black and white

Fig. 2 e Hispa Variations: Image on the left has visible black pest

stage of Hispa attack. Image on the right has intense spots on

Hispa attack.
of parameters such as VGG16 and InceptionV3. Later the

proposed light-weight two-stage Simple CNN has been tested

and compared with three state-of-the-art memory efficient

CNN architectures such as MobileNetv2, NasNet Mobile and

SqueezeNet. VGG16 (Simonyan & Zisserman, 2014) is a

sequential CNN architecture using 3� 3 convolution filters.

After eachmaxpooling layer, the number of convolution filters

gets doubled in VGG16. InceptionV3 (Szegedy et al., 2015) is a

non-sequential CNN architecture consisted of inception

blocks. In each inception block, convolution filters of various

dimensions and pooling are used on the input in parallel. The

number of parameters of these five architectures along with

simple CNN architecture have been given in Table 3. Three
ptom Variation Sample No.

own Plant Hopper attack 50

wn Plant Hopper attack 21

66

27

af and stem 96

rain 71

em 67

ts and white spot on plant leaf 53

ntense spot on leaves 20

in 180

m 21

70

77

symptom mixed 72

s and white spots on the plant leaf which occur during early

leaves with no visible pest occurring during later stage of

https://doi.org/10.1016/j.biosystemseng.2020.03.020
https://doi.org/10.1016/j.biosystemseng.2020.03.020
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different types of training methods have been implemented

on each of these five architectures.

Baseline training: All randomly initialised architecture

layers are trained from scratch. This method of training takes

time to converge.

FineTuning:Theconvolution layersof theCNNarchitectures

are trained from their pre-trained ImageNet weights, while the

dense layers are trained from randomly initialised weights.

Transfer Learning: In this method, the convolution layers

of the CNN architectures are not trained at all. Rather pre-

trained ImageNet weights are kept intact. Only the dense

layers are trained from their randomly initialised weights.
Fig. 3 e Simple CNN architecture.
10-fold cross-validation accuracy along with standard

deviation have been used as model performance metric

since the dataset used in this work does not have any major

imbalance. Categorical Crossentropy has been used as loss

function for all CNN architectures since this work deals

with multi-class classification. All intermediate layers of

the CNN architectures used in this work have relu as acti-

vation function while the activation function used in the

last layer is softmax. The hyperparameters used are as

follows: dropout rate of 0.3, learning rate of 0.0001, mini

batch size of 64 and number of epochs 100. These values

have been obtained through hyperparameter tuning using

10-fold cross-validation. Adaptive Moment Estimation

(Adam) optimiser has been used for updating the model

weights.

All the images have been resized to the default image

size of each architecture before working with that archi-

tecture. For example, InceptionV3 requires 299� 299� 3

pixel size image while VGG16 requires image of pixel size

224� 224� 3. Random rotation from �15� to 15�, rotations of

multiple of 90� at random, random distortion, shear trans-

formation, vertical flip, horizontal flip, skewing and in-

tensity transformation have been used as part of the data

augmentation process. Every augmented image is the result

of a particular subset of all these transformations, where

rotation type transformations have been assigned high

probability. It is because CNN models in general are not

rotation invariant. In this way, 10 augmented images from

every original image have been created. Random choice of

the subset of the transformations helps augment an original

image in a heterogeneous way.

A remote Red Hat Enterprise Linux server of RMIT Uni-

versity has been used for carrying out the experiments. The

configuration of the server includes 56 CPUs, 503 GB RAM, 1

petabyte of user specific storage and two NVIDIA Tesla P100-

PCIE GPUs each of 16 GB.
Table 4 e Quantitative performance of different state-of-
the-art CNN architectures obtained from 10 fold cross
validation (best accuracy of each architecture has been
mentioned in bold character).

CNN
Architecture

Training Method
Used

Mean
Validation
Accuracy

Standard
Deviation

VGG16 Baseline training 89.19% 10.28

Transfer Learning 86.52% 5.37

Fine Tuning 97.12% 2.23

InceptionV3 Baseline training 91.17% 3.96

Transfer Learning 72.09% 7.96

Fine Tuning 96.37% 3.9

MobileNetv2 Baseline training 78.84% 7.38

Transfer Learning 77.52% 8.56

Fine Tuning 96.12% 3.08

NasNet Mobile Baseline training 79.98% 6.96

Transfer Learning 78.21% 8.09

Fine Tuning 96.95% 3.35

SqueezeNet v1.1 Baseline training 74.88% 8.18

Transfer Learning 42.76% 9.12

Fine Tuning 92.5% 3.75

Simple CNN Two Stage Training 94.33% 0.96
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2.3. Proposed simple CNN model

Apart from adapting state-of-the-art CNN models, a memory

efficient two-stage small CNN architecture, namely Simple

CNN shown in Fig. 3 has been constructed from scratch

inspired by the sequential nature of VGG16. Fine tuned VGG16

provides excellent result on rice dataset. This Simple CNN ar-

chitecture has only 0.8 million parameters compared to 138

million parameters of VGG16. All five of the state-of-the-art

CNN architectures trained and tested in this work have

shown the best result when fine tuning has been used (see

Section 3). Two stage training is inspired from fine tuning. In

stage one, the entire image dataset of nine classes are divided
Fig. 4 e Confusion matrix generated us

Fig. 5 e First convolution laye
into 17 classes by keeping all intra-class variations in separate

classes. These variations have been shown in detail in Table 2.

For example,others class is divided into three separate classes.

Thus, themodel is trainedwith this17classdataset.Asa result,

the final dense layer of the model has 17 nodes with softmax

activation function. In stage two, the original dataset of nine

classes is used. All layer weights of simple CNN architecture

obtained from stage one are kept intact except for the topmost

layer. This dense layer consisting of 17 nodes is replacedwith a

dense layer consisting of nine nodes with softmax activation

function. Suchmeasures are taken, because stage two training

data are divided into the nine original classes. Now all the

layers of the Simple CNN architecture are trained using this
ing simple CNN on entire dataset.

r output of simple CNN.
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Fig. 6 e Last convolution layer output of simple CNN.

b i o s y s t em s e n g i n e e r i n g 1 9 4 ( 2 0 2 0 ) 1 1 2e1 2 0118

https://doi.org/10.1016/j.biosystemseng.2020.03.020
https://doi.org/10.1016/j.biosystemseng.2020.03.020


b i o s y s t em s e ng i n e e r i n g 1 9 4 ( 2 0 2 0 ) 1 1 2e1 2 0 119
nine class dataset which are initialised with the pre-trained

weights obtained from stage one training. Experiments show

the effectiveness of applying this method.
3. Results and discussion

Experimental results obtained from 10-fold cross-validation

for the five state-of-the-art CNN architectures along with

Simple CNN have been shown in Table 4. Transfer learning

gives the worst result in all five of themodels. For the smallest

architecture SqueezeNet, it is below 50%. Rice disease and pest

images are different from images of ImageNet dataset. Hence,

the freezing of convolution layer weights disrupts learning of

the CNN architectures. Although baseline training, also

known as training from scratch, does better than transfer

learning, the results are still not satisfactory. For the three

small models, the accuracy is less than 80%. The standard

deviation of validation accuracy is also large which denotes

low precision. This shows that themodels are not able to learn

the distinguishing features of the classes when trained from

randomly initialised weights. More training data may solve

this problem. Fine tuning gives the best result in all cases. It

also ensures high precision (lowest standard deviation). It

means that for the state-of-the-art CNN architectures to

achieve good accuracy on rice dataset, training on the large

ImageNet dataset is necessary prior to training on the rice

dataset. Fine-tuned VGG16 achieves the best accuracy of

97.12%. The Simple CNN architecture utilising two stage

training achieves comparable accuracy and the highest pre-

cision without any prior training on ImageNet dataset. Rather,

this model is trained from scratch.

From Table 3, it is evident that the Simple CNN model

has a small number of parameters even when compared to

small state-of-the-art CNN architectures such as MobileNet

and NasNet Mobile. The number of parameters of Squee-

zeNet (the smallest of the five state-of-the-art CNN archi-

tectures in terms of parameter number) is comparable to the

parameter number of the Simple CNN. Sequential models

like VGG16 need depth in order to achieve good perfor-

mance, hence they have large numbers of parameters.

Although Simple CNN is a sequential model with a low

number of parameters, its high accuracy (comparable to the

other state-of-the-art CNN architectures) proves the effec-

tiveness of two stage training. Future research should aim at

building miniature version of memory efficient non-

sequential state-of-the-art CNN architectures such as

InceptionV3, DenseNet and Xception. These architectures

should be able to achieve similar excellent results with even

smaller number of parameters.

A major limitation of two stage training is that the entire

dataset has to be divided manually into symptom classes. In

a large dataset, detecting all the major intra-class variations

is a labour intensive process. There is a great chance of

missing some symptom variations. Minor variety within a

particular class maybe misinterpreted as separate symptoms.

One possible solution could be to use high dimensional

clustering algorithms on each class-specific image set sepa-

rately in order to automate this process of identifying intra-

class variations.
The confusion matrix generated from the application of

Simple CNN on the entire dataset (training and validation set

combined) has been shown in Fig. 4. 4.3% of the False Smut

images existing in the dataset have been misclassified, which

is the highest among all present classes of this work. False

Smut symptoms cover a small portion of the entire image

(captured with heterogeneous backgrounds) compared to

other existing pest and disease images.

The first convolution layer outputs of Simple CNN have

been shown in Fig. 5. The three rows from top to bottom

represent output for Fig. 1a, d and i respectively, while the

left and right columns represent output for stage one and

stage two of the Simple CNN model respectively. Each of the

six images contains 16 two dimensional mini images of size

222� 222 (first convolution layer outputs a matrix of size

222� 222� 16). The last convolution layer outputs of Simple

CNN have been shown in Fig. 6 in a similar setting. Each of

the six images of Fig. 6 contains 64 two dimensional mini

images of size 10� 10 (last convolution layer outputs a

matrix of size 10� 10� 64). The first layer maintains the

regional features of the input image, although some of the

filters are blank (not activated). The activations retain

almost all of the information present in the input image.

The last convolution layer outputs are visually less under-

standable. This representation depicts less information

about the visual contents of the input image. Rather this

layer attempts to present information related to the class of

the image. The intermediate outputs for different classes

are visually different for different classes. An interesting

aspect can be observed in Fig. 6. The last convolution layer

output for stage one model carries considerably fewer blank

two dimensional mini images than does the stage two

model. This shows the capability of the stage two model in

terms of learning with less features. This helps Simple CNN

achieve good accuracy and high precision after stage two

training.
4. Conclusion

This work has the following contributions:

� A dataset of rice diseases and pests consisting of 1426

images has been collected in real life scenario which

cover eight classes of rice disease and pest. This dataset

is expected to facilitate further research on rice diseases

and pests. The dataset is available here (https://drive.

google.com/open?id¼1ewBesJcguriVTX8sRJseCDbXAF_

T4akK). The details of the dataset have been described

in Subsection 2.1.

� Three different training methods have been imple-

mented on two state-of-the-art large CNN architectures

and three state-of-the-art small CNN architectures

(targeted towards mobile applications) on the rice

dataset. Fine tuning from pre-trained ImageNet weight

always provided the best result for all five architectures.

� A new concept of two stage training derived from the

concept of fine tuning has been introduced which en-

ables proposed Simple CNN architecture of this work to

perform well in real life scenario.

https://drive.google.com/open?id=1ewBesJcguriVTX8sRJseCDbXAF_T4akK
https://drive.google.com/open?id=1ewBesJcguriVTX8sRJseCDbXAF_T4akK
https://drive.google.com/open?id=1ewBesJcguriVTX8sRJseCDbXAF_T4akK
https://drive.google.com/open?id=1ewBesJcguriVTX8sRJseCDbXAF_T4akK
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In future, incorporating location, weather and soil data

along with the image of the diseased part of the plant can be

investigated for a comprehensive and automated plant dis-

ease detectionmechanism. Segmentation or object detection-

based algorithm can be implemented with a view to detecting

and classifying rice diseases and pests more effectively in the

presence of heterogeneous background.
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