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The probiotic encapsulating hydrogel derived from porang (Amorphophallus oncophyllus) glucomannan and chitosan was in-
vestigated with regard to its encapsulation efficiency, physical properties, prebiotic activity, and survival under simulated
gastrointestinal conditions. The hydrogel’s encapsulation efficiency was improved by varying the number of the Lactobacillus
acidophilus FNCC 0051, which also served to increase the diameter (2-3 mm), polydispersity index (1.23-1.65), positive zeta
potential, whiteness, and brightness of the hydrogel. Moreover, the hydrogel’s prebiotic activity score was higher than that of
inulin after 24h of incubation, reflecting its role as a cell encapsulant, particularly when it comes to maintaining cells during
exposure to simulated gastrointestinal fluid. The cell viability increased from 86% to 100% when immersed in intestinal juice,
which is comparable to the increase achieved using alginate and konjac glucomannan hydrogels. Future animal studies are
required to determine the cell viability in actual gastrointestinal conditions and assess the health effects of the hydrogel.

1. Introduction

Glucomannan is a functional polysaccharide that can be
extracted from Amorphophallus tubers. While the gluco-
mannan obtained from Amorphophallus konjac has
a number of popular and commercial uses, several research
groups are currently investigating the potential of gluco-
mannan derived from other sources. Amorphophallus
oncophyllus, which is commonly known as porang, is a local
glucomannan source in Indonesia [1, 2]. It has several
characteristics that differ from those of konjac, including
mannose/glucose molar ratio, degree of polymerization, and
degree of acetylation, leading it to exhibit different solubility,
viscosity, water-holding capacity, and gelation properties
(1, 2]. Therefore, the applications of porang may also differ
depending on the function.

A hydrogel is a kind of technological glucomannan
product that leverages its gelation properties. Hydrogels are
formed through intcractioﬂ:ctwecn glucomannan and
other polymers that lead to the formation of a three-
dimensional polymeric network [3]. This characteristic re-
sults in hydrogels exhibit potential as encapsulants. A
previous study used a hydrogel created by crosslinking
konjac, glucomannan, and chitosan, which was found to
have many advantages, including natural formation without
the need for a crosslinker, self-assembly, tolerance to dif-
ferent pH levels, and demonstrable ability to encapsulate
drugs, proteins, and enzymes [4, 5]. A similar study in-
volving hydrogels formed by means of the interaction be-
tween porang glucomannan and chitosan investigated the
production of the primary carboxymethyl glucomannan
material, the compatibility of the substitution degree of the




carboxymethyl glucomannan involved in the hydrogel
formation, the effect of the polymer concentration on the
glucomannan properties, and the application in relation to
probiotic encapsulation [6-8]. The key innovation of the
study was the use of porang, which has characteristics that
acr from those of other glucomannan sources, such as the
solubility, viscosity, water-holding capacity, degree of po-
lymerization, degree of acetylation, purity, and X-ray dif-
fraction (XRD) pattern [1, 2]. The other differences include
the type of modification used (carboxymethylation) and the
use of the hydrogel as a probiotic encapsulant. By contrast,
prior studies made use of the oxidation method [5] and
encapsulated drugs, proteins, and enzymes [4, 5]. The use of
carboxymethyl konjac glucomannan-chitosan as a probiotic
encapsulant was recently studied, but it was combined with
a calcium-alginate hydrogel bead system [9]. They were also
found to be used as a secondary emulsion to carry
curcumin [10].

However, given that living cells have different char-
acteristics to inanimate compounds, the role of this new
hydrogel in encapsulating probiotics needs to be furt?
studied. Indeed, the new capsules should ensure the
survival of the probiotics during food processing and
storage, in addition to ensuring sufficient delivery when
consumed (>10°-107 colony-forming units [CFU]/mL).
Furthermore, the capsules need to allow the probiotics to
reach the lower gastrointestinal tract if they are to have
a beneficial effect on humans. Thus, the survival of the
capsules during gastrointestinal digestion and their
ability to increase probiotic growth in the colon are
important.

We previously studied the properties of the hydrogel
produced in the different glucomannan concentration and
evaluated its probiotic encapsulation efficiency, also its role
in protecting cells during pasteurization and cold storage
[8]. Encapsulation efficiency could not only be improved
by varying the concentration of added polymer but also
added core [11]. The impact of probiotic cells number as
the core on the encapsulation efficiency and the properties
of the hydrogel in this work remain unexplored. The
present study sought to improve the probiotic encapsu-
lation efficiency by varying the number of cells and to
evaluate the hydrogel’s physical properties. It also exam-
ined the ability of the hydrogel to maintain probiotics
during simulated gastrointestinal exposure and its potency
as a prebiotic.

7
g Materials and Methods

2.1. Materials. The primary material used in this study was
glucomannan derived porang tubers (A. oncophyllus),
which was obtained from the Faculty of Agricultural
Technology, Universitas Gadjah Mada (Yogyakarta, Indo-
nesia). The carboxymethylation of the glucomannan was
performed using sodium chloroacetate, as previously de-
scribed [7]. The utilized chitosan, which had a degree of
deacetylation of 859%-89%, meaning that it met established
food quality criteria, was obtained from PT Biotech Surindo
(Cirebon, West Java, Indonesia).
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2.2. Preparation of the Lactobacillus acidophilus FNCC 0051
Cells. The L. acidophil@)FNCC 0051 cells used in this study
were obtained from the Food and Nutrition Culture Collection
(FNCC) of the Laboratory of Food Microbiology, Center for
Food and ition Studies, Universitas Gadjah Mada. The
cells, which wereffftored in a skim milk-glycerol suspension,
were rejuvenated in de Man, Rogosa, and Sharpe (MRSEproth
at 37°C overnight and then grown twice. Subsequently, the cell
biomass was harvested by means of centrifugation at 2400 g for
9min at 4°C and then rinsed with saline solution.

2.3. Production of the Hydrogel and Determination of its
Encapsulation Efficiency. The hydrogel was created by
mixing porang glucomannan with chitosan using the
complex coacervation method [8]. The encapsulation of the
probiotics in the hydrogel w. rformed using three dif-
ferent cell numbers, namely 8 log CFU/mL, 9 log CFU/mL,
and 10 log CFU/mL. The cells were mixed with gluco-
mannan prior to the start of the coacervation process. The
hydrogel’s encapsulation efficiency was determined by re-
leasing the cells trapped within it using a buffer solution at
pH 8 and 37°C for 24h [7]. The released cells were then
grown in MRS agar to allow for the enumeration of the total
viable cells. To calculate the cncapsu?yn efficiency, the
total viable cell number was divided by the number of initial
cells added to the hydrogel mixture [12].

2.4. Determination of the Hydrogel’s Properties

.4.1. Particle Size, Polydispersity Index, and Zeta Potential.
The particle size was estimated based on the hydrogel’s
diameter and simultaneously measured on the basis of the
polydispersity index using a particle size analyzer (SZ-100
series; Horiba, Kyoto, Japan). The hydrogel's zeta potential
was measured using a Nano ZS Zetasizer (v.6.20; Malvern
Instruments Ltd., Malvern, UK).

2.4.2. Color. The hydrogel was freeze-dried and ground
prior to the color measurement. The redness (a*), yellowness
(b*), and lightness (L*) values were determined using
a CR200 chroma meter (Minolta, Osaka, Japan). The
whiteness index was calculated as previously described [13].

3. Crystallinity Percentage. The XRD of the hydrogel was
etermined using a LabX XRD-6000 diffractometer (Shi-
madzu, Kyoto, Japan) equipped with a Cu Ka target at 40 kV
and 30 mA, which had a scanning rate of 4°/min. The pattern
was collected in the 26 range between 3.02° and 90°. The
ta.lli.nity percentage (%) was calculated by dividing the
area under the peaks by the total area under the curve [14].

2.5. Determination of the Prebiotic Activity Score. The pre-
biotic activity score was calculated by subtracting the ratio of
probiotic cell growth with prebiotics and glucose from the
ratio of enteric cell growth with prebiotics and glucose, as
previously described [15]. The probiotic used was
L. acidophilus FNCC 0051, whereas the enteric cells used
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were Escherichia coli FNCC 0091. The test was performed by
adding 1% (volume/volume [v/v]) probiotic cells into MRS
broth containing 2% (weight/volume [w/v]) glucose or
prebiotic and adding 1% (v/v) enteric cells into M9 broth
taining 2% (wiv) glucose or prebiotic. The cells were
incubated at 37°C for Oh, 24h, and 48h and then enu-
merated by means of the plate count method using MRS and
nutrient agar. Each test was performed three times.

2.6. Determinatidg of L. acidophilus FNCC 0051 Survival
during Exposure to Simulated Gastrointestinal Conditions.
The utilized simulat astric and intestinal juices were
prepared according to the method described by Xuet al. [16].
More specifically, the gastric juice was prepared by mixing
7 mL of pepsin in hydrochloric acid, 2 g of sodium chloride,
and 1M of sodium hydroxide. The intestinal juice was
prepared by mixing 1% pancreati wder, 6.8 g of potas-
sium dihydrogen phosphate, and 77mL of 0.2N sodium
hydroxide. Next, 1 g of either free or encapsulated cells (in
hydrogel derived from porang glucomarman-chito
konjac glucomannan-chitosan, and calcium alginate) was
mixed with 9mL of simulated gastrointestinal juices and
incubated at 35 for 120 min. The samples were withdrawn
at intervals of 0 min, 30 min, in, and 120 min to reflect
gastric juice digestion and Omin, 60 min, 90 min, and
120min to reflect intestinal juice digestion [17]. The
hydrogel was then rinscc?cc with acetate buffer. The cells
were enumerated using the pour plate technique on MRS
agar after 48h of incubation. The number of viable cells

owing exposure was divided by the initi ber of cells
in order to determine the cell survival rate during exposure
to simulate trointestinal conditions [12]. The hydrogel’s
appearance during exposure to simulated gastrointestinal
conditions was observed using an optical BX51 microscope
(Olympus Corp., Tokyo, Japan) and an OptiLab prodigital
camera (PT Miconos, Indonesia).

?Results and Discussion

3.1. Encapsulation Efficiencies of Hydrogels with Different
Numbersof Cells. The encapsulation efficiencies of hydrogels
with different numbers of initial cells are shown in Table 1.
The data revealed that the encapsulation efficiencies of the
hydrogels ranged between 44.37% and 85.03%. The highest
encapsulation efficiency was achieved when 10 log /mL
of cells was added to the mixture, which exceeded the Food
and Agricultural Organization of the United Nations (FAO)
criteria for probiotic products (>6-7 log CFU/mL; [18]).
Previous studies using different encapsulants obtained dif-
ferent encapsulation efficiencies. For instance, the encap-
sulation of L. acidophilus in hydrogel formed from sodium
alginate and soy protein isolates achieved an encapsulation
efficiency of 95%-98%, whereas the encapsulation of Lac-
tobacillus rhamnosus and Lactobacillus plantarum in an
emulsion achieved an encapsulation efficiency of 97%-99%
[12, 19]. The differences in the achieved encapsulation ef-
ficiencies might reflect the different encapsulant types and
encapsulation methods used [12]. We previously showed

that the same ratio of glucomannan and chitosan affected the
encapsulation efficiency due to the chemical bonding of both
polymers as well as due to the difference in electrostatic
values between the core and the polymer influencing the
degree of cell entrapment [8].

3.2. Properties of the Hydrogels with Different Cell Numbers.
The appearance of the hydrogels generated from gluco-
mannan and chitosan containing L. acidophilus is shown in
Figure 1. The polymer solution was clear before the en-
capsulation process, although it became turbid after the
encapsulation process. This provided evidence of the for-
mation of particles that influenced the turbidity of the so-
lution. After the drying process, the hydrogels exhibited
a shape similar to that of white cotton. The particle sizes and
color values of the hydrogels will be explained.

The sizes of the hydrogels encapsulating L. acidophilus
were found to be in the range of 0.7 ym to 9 um, with most
having a diameter of 2 um to 3 ym (Table 2). Those hydrogels
determined to be <100 ym in diameter were classified as
microgels. The cell concentration significantly influenced the
hydrogels’ particle size (p < 0.05). In fact, the more cells
encapsulated within a given hydrogel, the greater its di-
ameter. The particle size was also correlated with the en-
capsulation efficiency (Table 1), as more cores could be
trapped within larger hydrogel particles. The other factors
found to influence the particle sizes were the concentration
and viscosity of the solution [8, 12].

The polydispersity indexes of the hydrogel-encapsulated
cells were all >1 (Table 2), indicating the broad distribution
of particles of various sizes. Overall, the index began to
change when the initial cell number was 10 log CFU/mL.
Moreover, the greater the initial cell number, the higher the
polydispersity index. This result contrasts with the result of
a previous study that found the glucomannan concentration
to not influence the polydispersity index [8].

The hydrogels’ zeta potentials became more electro-
positive as the cell number increased from 8 to 9 log CFU/
mL but then decreased as the cell number reached 10 log
CFU/mL (Table 2). An increase in the number of cells should
result in a reduction in the hydrogel's charge due to the
positive charge of empty hydrogels and the negative charge
of cells [8], including L. acidophilus [20]. The observed
pattern might stem from the zeta potential being measured
on the hydrogel’s surface, meaning that it could have been
affected by the pH of the surrounding environment [21].

The L*, b*, and whiteness values of the hydrogels in-
creased after the addition of cells, whereas the a* value
decreased (Table 3). The utilized instrument determined
these values based on the reflection by the cells of a direct
light beam from a chroma meter. Therefore, the more cells
encapsulated within the hydrogel, the greater the reflection.
Bacteria may also generate distinct shades of colors such as
red. Based on the findings of a prior study, Lactobacillus
pluvialis could reflect an orange color from the pigment of
canthaxanthin [22]. This finding is in agreement with the
present result, especially in terms of the increase in the b*
value following the addition of L. acidophilus.
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TasLe 1: Encapsulated cell numbers and hydrogel encapsulation efficiencies with different initial cell numbers.

Hydrogels with different
cell numbers
(log CFU/mL)

Cell num efore
encapsulation (log CFU/mL)

Cell number after

encapsulation (log CFU/g) Encapsulation efficiency (%)

8 9.39 +0.00
9 9.56 + 0.00
10 10.10 + 0.00

4.47 +0.18 4437 +191°
6.60+0.13 65.83 +1.37°
7.94+0.21 85.03+ 0.63°

Values represent the mean + standard deviation (SD). Different superscript letters in the same column indicate significantly different results at the level of

P < 005,

(b)

Figure 1: The appearance of hydrogels (a) before drying and (b) after the drying process.

TasLE 2: Particle sizes, polydispersity indexes, and zeta potentials of hydrogels with different initial cell concentrations.

Initial cell number
(log CFU/mL)

Particle size (um)

Polydispersity index Zeta potential (mV)

8 2.2340.11°
9 279 +0.19°

2440 +0.75
32.28 +0.80°
14.58 +0.97°

123 +017°
1.39+0.04°
1.65 +027"

341 +0.14°
g;ues represent the mean + SD. Different superscript letters in the same column indicate significantly different results at the level of p < 0.05.

TasLe 3: Color values of hydrogels with different initial cell numbers.

Initial cell number

(log CFU/mL) L a b Whiteness

Control 65.06 +0.12* 7.02 +0.09° 12.50 + 0.08* 62.24 +0.15%
8 7697 +0.32° 542 +0.01° 14.24 £0.11° 7238 +0.21°
9 79.48 +0.33° 561 +0.07° 15.14 +0.01¢ 73.89 + 0.25°

a 7739 +023" 422+023° 13.24+0.13" 73.46+ 0.30°
alues represent the mean + 5D. Different superscript letters in the same column indicate significantly different results at the level of p < 0.05

The XRD spectra represent the interaction between the
diffraction intensity and the angle (Figure 2). Moreover,
a crystalline state is indicated by the sharp diffraction peak,
whereas an amorphous and solid state is indicated by the
declivous peak [2]. The X-ray diffractogram patterns of all
the hydrogels showed a very broad band at 26 between 5" and
90°. In addition, all the hydrogels exhibited nearly identical
highest peaks at around 28 7.06’-10.46°, 7.62°-11.00°,
7.48°-10.94°, and 7.16-11.20" for Pose hydrogels without
cells and with cells at numbers of 8 log CFU/mL, 9 log CFU/
mL, and 10 log CFU/mL, respectively. These results differ
from those concerning porang glucomannan, which

exhibited its highest peaks at around 19°-20° and 35" [2].
However, there was a small peak in all the samples at around
26 10.5", indicating the presence of chitosan [23]. This ob-
servation suggests that the mixture of glucomannan
hydrogel and cells strengthened the associated chemical
interaction, which is consistent with previous Fourier-
transform infrared spectroscopy (FTIR) findings [8]. It
also suggests that some chitosan did not interact with
glucomannan. A prior study reported that Schiff's cross-
linking between glucomannan aldehyde groups and chitosan
amino groups could suppress the chitosan’s crystalline state,

which is usually strengthened by the hydrogen bond
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Fiure 2: X-ray diffractogram for HO (hydrogel without L. acidophilus), H8, H9, and H10 (hydrogels with L. acidophilus at numbers of 8 log

CFU/mL, 9 log CFU/mL, and 10 log CFU/mL, respectively).

between the amino and hydroxyl groups [23]. We also found
evidence of low crystallinity, with values of 26%, 25%, 17%,
and 21% being determined foffthe hydrogels without cells
and with cells at numbers of 8 log CFU/mL, 9 log CFU/mL,
and 10 log CFU/mL, respectively. The addition of
L. acidophilus appeared to have no effect on the diffraction
peak, indicating that the entrapment of microbes within the
hydrogel did not affect the interaction between gluco-
mannan and chitosan.

3.3. Prebiotic Activity of the Hydrogels. The L. acidophilus
and E. coli cell density increased during 0 h, 24h, and 48h of
incubation in the presence of carbohydrates, glucose, inulin,
and hydrogel (Table 4). Both bacteria showed no significant
increase in almost all the carbohydrates, except for
L. acidophilus with inulin and E. coli with glucose. These data
suggest that only inulin is able to specifically stimulate the
growth of good bacteria and suppress the growth of enteric
bacteria, which is consistent with its widespread use as
a commercial prebiotic.

The prebiotic potential of the hydrogel was compared
with that of inulin on the basis of the prebiotic activity sclys
(Figure 3). The prebiotic activity score of the hydrogel was
higher than that of inulin after 24 h of incubation, although it
was reduced after 48 h, suggesting that the hydrogel was the
preferred energy source for the cells. This result is consistent
with the XRD findings, which confirmed the hydrogel to
have an amorphous state and no long-range order, making it
easier to digest. Moreover, the amount of carbohydrates will

decrease with time. By contrast, the known prebiotic inulin
[24] required a longer time to be available for the bacteria
due to its long polymeric carbon chains-that is, chains of
around 2-60 molecules [25].

3.4. Cell Survival during Exposure to ﬁulﬂted

Gastrointestinal Conditions

3.4.1. Cell Survival during Exposure to Gastriffuice. The
L. acidophilus showed good viability during exposure to
gastric juice at pH 2, whether in its free form or when
encapsulated in hydrogel (Figure 4). Generally, the growth of
lactic acid bacteria is optimum at pH 6-7 (close to neutral
pH). Some metabolic reactions change when the pH is <5 or
<4.4. Indeed, some minerals will be lost at pH <2, while
prolonged storage at a low pH will increase the risk of cell
death [26]. Our results in this regard are consistent with
those of previous studies [3, 12]. Furthermore, studies are
required to determine the effect of solid or solid-enriched
macronutrient foods with a longer transit time [27]. In
addition, a shorter exposure time within the stomach enables
cells to maintain homeostasis between the internal and
external pH, which potentially influenced the good viability
found in this study.

The present study also found that porang glucomannan-
chitosan hydrogel might exhibit a similar ability to protect
cells from the gastric environment as both konjac
glucomannan-chitosan hydrogel and calcium-alginate

hydrogel (p > 0.05). This finding accords with the ability
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TasLE 4: Density of Lactobacillus acidophilus FNCC 0051 and Escherichia coli cells in 10 log CFU/mL after 0 h, 24 h, and 48 h of incubation
with prebiotics, inulin, hydrogel, and glucose.

Prebioti q Lactobacillus acidophilus Escherichia coli
replotc
0 24h 48h 0h 24h 48h
Glucose 694+ 1.32° 8.35+0.81° 9.17+0.01° 6.65+0.92° 8.54+0.09° 9.29+0.49"
Inulin 6.59 +0.19° 733 +049% 8.48 + 0.88° 9.53+0.09° 7.59 +0.32° 8.47 +0.75°
rogel 9,37 +0.10° 9.58 +0.46° 10.15 +0.21° 8.80+ 1.13° 8.17 +0.86* 9.02+2.18°
g

alues represent the mean £ SD. Different superscript letters in the same row indicate significantly different results at the level of p < 0.05.

045 0.48
0.4
0.36
o 031
: 027
o 0 0

Glucose Inulin Hydrogel Glucose Inulin Hydrogel
24 48

Prebiotic activity score
[=1 [=1 (=] [=1
= 2 = 2 L 2 ik
un — ] 2 n la un

[=1

Period (hours)
Figure 3: Prebiotic activity score of L. acidophilus FNCC 0051 on glucose, inulin, and hydrogel.

100
g 801
=
o
< 604
g
=
=
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0
Free cells CPGM-chitosan CKGM-chitosan Ca-alginate
hydrogel hydrogel hydrogel
Type of hydrogel
O Omin 60 min
30 min B 120 min

Fraure 4: L. acidophilus FNCC 0051 viability during exposure to gastric juice for 120 min. Key: a, p < 0.05, CPGM: carboxymethyl porang
glucomannan, and CKGM: carboxymethyl konjac glucomannan.

of alginate to protect L. plantarum [17] and Lactobacillus ~ that determined the hydrogel to not deswell at a pH <5.
rhamnosus from this harsh environment over the course of Deswelling causes the hydrogel to become smaller, which
3h of exposure [28]. was previously thought to result in the release of cells from

The hydrogel was stable in the simulated gastric juice  the hydrogel. However, the cells are still trapped in the
throughout 120 min of exposure (Figure 5), which is con- hydrogel (Figure 5), which perhaps reflects the stronger
sistent with the result of a previous swelling ratio study [8] electrostatic interaction between the glucomannan carbonyl
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(b)

(d)

Fia 5: Microscopic appearance of hydrogel containing L. acidophilus FNCC 0051 (1300x magnification) during exposure to gastric juice

for (a) 0 min, (b) 30min, (c) 60 min, and (d) 120 min.

group and chitosan amine group in an acid environment [8].
The cells remain in the hydrogel because this interaction
maintains the core. Thus, deswelling could not be maxi-
mized, leading to only a small number of cells being released
from the hydrogel. It is possible that some empty hydrogels
will shrink to the extent that they are no longer visible after
60 min of exposure. These results are consistent with those of
other studies using hydrogels made from oxidized gluco-
mannan and chitosan to trap diclofenac drugs, which found
<1% of cells to be released during exposure to simulated
gastric fluid at pH 9 [5]. This shows that the hydrogel cores
were not released When the hydrogel was exposed to low
pH conditions.

3.4.2. Cell Survival during Exposure to Intestinal Juice.
The viability of the free cells decreased significa. during
exposure to intestinal juice for 60 min (Figure & p < 0
Yet, the viability of the cells encapsulated in the hydrogel was
maintained over 120min of exposure, indicating that the
psulation increased the viability of the L. acidophilus. A
ecrease in the number of free cells may reflect cell death,
which can be caused by factors other than the pH of the
medium. Priya et al. [20] reported that while bacteria
showed good growth at pH 6.8, the presence of pancreatin
(comprising amylase, trypsin, lipase, ribonuclease, and
protease) damaged the encapsulation wall, thereby resulting
in cell death.

Figure 6 indicates that the porang glucomannan
hydrogel exhibited the same level of good protective effect as
the konjac-chitosan glucomannan and calcium-alginate
hydrogels. In this study, the alginate-based ogel was
used for the purpose of comparison because it 1s widely used
as an encapsulant due to its low price, good biocompatibility,
and nontoxicity. A prior study foun at the probiotic
encapsulation of alginate increased the viability of the
trapped cells when compared with the free cells during
exposure to a simulated gastrointestinal condition [3].
Therefore, the porang-chitosan glucomannan hydrogel
shows potential as a bacterial encapsulant.

The hydrogel’s microscopic appearance was used to
confirm the cell viability data. Here, the porang
glucomannan-chitosan hydrogel remained stable for up to
2 hin the intestinal fluid. However, it was found to be larger
after 60 min of exposure than after 0 min (Figure 7), po-
tentially reflecting its swelling behavior at pH 6.8. We have
previously shown that porang glucomannan-chitosan
hydrogel begins to swell at pH >5 [8]. The swelling of the
hydrogel was evident until it reached 90 min of exposure.
Moreover, many small hydrogels and cells were visible in the
solution after 120 min of exposure. The swelling weakened
the interaction of the hydrogels, leading to some parts being
dissolved, which resulted in both smaller hydrogels and the
release of cells from the hydrogels. This result is consistent
with that of another study that found konjac glucomannan-
carboxymethyl chitosan hydrogel with a bovine serum
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120

&0

Viability of cells (%)
2
L

40

20
0
Free cells CPGM-chitosan CKGM-chitosan Ca-alginate hydrogel
hydrogel hydrogel
Type of hydrogel
O 0 min B 90 min
@ 60 min B 120 min

Figure 6: L. acidophilus FNCC 0051 cell viability during exposure to intestinal juice for 120min. Key: a or b, p < 0.05, CPGM: car-
boxymethyl porang glucomannan, and CKGM: carboxymethyl konjac glucomannan.

(a) (b)

() (d)
Ficure 7@k roscopic appearance of hydrogel containing L. acidophilus FNCC 0051 (1300x magnification) during exposure to intestinal
juice for (a) 0 min, (b) 60min, (¢) 90 min, and (d) 120 min.

albumin core to show greater core release at pH 7.4 than at 4. Conclusions

pH 5 due to the swelling enlarging its pores [4]. This core 9

release also occurred when a chitosan-oxidized gluco. The encapsulation of L. ar,‘idophifus in ydmgel made from
mannan hydrogel was exposed to simulated intestinal fluid glucomannan and chitosan was improved by varying the
for 2-8h [5]. number of cells added. In fact, higher numbers were found
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to be a iated with greater encapsulation efficiency, di-
ameter (2-3 mm), polydispersity index (1.23-1.65), positive
zeta potential, whiteness, and brightness. In addition, the
hydrogel exhibited potential as a prebiotic, particularly after
24h of incubation. Moreover, the hydfBgel protected the
encapsulated cells, maintaining them during exposure to
simulated gastrointestinal fluid. Furthermore, the cell via-
bility incre from 86% to 100% when the hydrogel was
exposed to Intestinal juice, which was comparable to the
performance of the alginate and konjac glucomannan
hydrogels. Furthermore, animal studies are required to
determine the cell viability in actual gastrointestinal con-
ditions and assess the health effects of the hydrogel.
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